Fast Point Multiplication Algorithms for Binary Elliptic Curves with and without Precomputation

نویسندگان

  • Thomaz Oliveira
  • Diego F. Aranha
  • Julio López Hernandez
  • Francisco Rodríguez-Henríquez
چکیده

In this paper we introduce new methods for computing constant-time variable-base point multiplications over the Galbraith-Lin-Scott (GLS) and the Koblitz families of elliptic curves. Using a left-to-right double-and-add and a right-to-left halve-and-add Montgomery ladder over a GLS curve, we present some of the fastest timings yet reported in the literature for point multiplication. In addition, we combine these two procedures to compute a multicore protected scalar multiplication. Furthermore, we designed a novel regular τ -adic scalar expansion for Koblitz curves. As a result, using the regular recoding approach, we set the speed record for a single-core constant-time point multiplication on standardized binary elliptic curves at the 128-bit security level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Algorithms for Arithmetic on Anomalous Binary Curves ?

It has become increasingly common to implement discrete-logarithm based public-key protocols on elliptic curves over nite elds. The basic operation is scalar multiplication: taking a given integer multiple of a given point on the curve. The cost of the protocols depends on that of the elliptic scalar multiplication operation. Koblitz introduced a family of curves which admit especially fast ell...

متن کامل

Efficient Arithmetic on Koblitz Curves

It has become increasingly common to implement discrete-logarithm based public-key protocols on elliptic curves over finite fields. The basic operation is scalar multiplication: taking a given integer multiple of a given point on the curve. The cost of the protocols depends on that of the elliptic scalar multiplication operation. Koblitz introduced a family of curves which admit especially fast...

متن کامل

Speeding up Elliptic Curve Scalar Multiplication without Precomputation

This paper presents a series of Montgomery scalar multiplication algorithms on general short Weierstrass curves over odd characteristic fields, which need only 12 field multiplications plus 12 ∼ 20 field additions per scalar bit using 8 ∼ 10 field registers, thus significantly outperform the binary NAF method on average. Over binary fields, the Montgomery scalar multiplication algorithm which w...

متن کامل

Fast Point Multiplication on Elliptic Curves without Precomputation

Elliptic curves find numerous applications. This paper describes a simple strategy to speed up their arithmetic in right-to-left methods. In certain settings, this leads to a non-negligible performance increase compared to the left-to-right counterparts.

متن کامل

COMPARISON OF ALGORITHMS FOR ELLIPTIC CURVE CRYPTOGRAPHY OVER FINITE FIELDS OF GF(2m)

For elliptic curve cryptosystems does exist many algorithms, that computes the scalar multiplication k·P. Some are better for a software solution and others are better for a hardware solution. In this paper we compare algorithms without precomputation for the scalar multiplication on elliptic curves over a finite field of GF(2). At the end we show which algorithm is the best for a hardware or s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014